Capturing non-local through-bond effects in molecular mechanics force fields I: Fragmenting molecules for quantum chemical torsion scans [Article v1.1]

Author:

Stern Chaya DORCID,Bayly Christopher IORCID,Smith Daniel G AORCID,Fass JoshORCID,Wang Lee-PingORCID,Mobley David LORCID,Chodera John DORCID

Abstract

AbstractAccurate molecular mechanics force fields for small molecules are essential for predicting protein-ligand binding affinities in drug discovery and understanding the biophysics of biomolecular systems. Torsion potentials derived from quantum chemical (QC) calculations are critical for determining the conformational distributions of small molecules, but are computationally expensive and scale poorly with molecular size. To reduce computational cost and avoid the complications of distal through-space intramolecular interactions, molecules are generally fragmented into smaller entities to carry out QC torsion scans. However, torsion potentials, particularly for conjugated bonds, can be strongly affected by through-bond chemistry distal to the torsion it-self. Poor fragmentation schemes have the potential to significantly disrupt electronic properties in the region around the torsion by removing important, distal chemistries, leading to poor representation of the parent molecule’s chemical environment and the resulting torsion energy profile. Here we show that a rapidly computable quantity, the fractional Wiberg bond order (WBO), is a sensitive reporter on whether the chemical environment around a torsion has been disrupted. We show that the WBO can be used as a surrogate to assess the robustness of fragmentation schemes and identify conjugated bond sets. We use this concept to construct a validation set by exhaustively fragmenting a set of druglike organic molecules and examine their corresponding WBO distributions derived from accessible conformations that can be used to evaluate fragmentation schemes. To illustrate the utility of the WBO in assessing fragmentation schemes that preserve the chemical environment, we propose a new fragmentation scheme that uses rapidly-computable AM1 WBOs, which are available essentially for free as part of standard AM1-BCC partial charge assignment. This approach can simultaneously maximize the chemical equivalency of the fragment and the substructure in the larger molecule while minimizing fragment size to accelerate QC torsion potential computation for small molecules and reducing undesired through-space steric interactions.

Publisher

Cold Spring Harbor Laboratory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3