DNA oxidation induced by fetal exposure to BPA agonists impairs female meiosis

Author:

Abdallah Sonia,Moison Delphine,Wieckowski Margaux,Messiaen Sébastien,Martini Emmanuelle,Campalans AnnaORCID,Radicella J. PabloORCID,Habert René,Livera GabrielORCID,Rouiller-Fabre Virginie,Guerquin Marie-JustineORCID

Abstract

SummaryMany endocrine disruptors have been proven to impair the meiotic process that is mandatory to produce healthy gametes. Bisphenol A is emblematic as it impairs meiotic prophase I and causes oocyte aneuploidy following in utero exposure. However, the mechanisms underlying these deleterious effects remain poorly understood. Furthermore, the increasing uses of BPA analogs raise concerns for public health. Here, we investigated the effect on oogenesis in mouse of fetal exposure to two BPA analogs, Bisphenol A Diglycidyl Ether (BADGE) or Bisphenol AF (BPAF). These analogs delay meiosis initiation, increase MLH1 foci per cell and induce oocyte aneuploidy. We further demonstrate that these defects are accompanied by a deregulation of gene expression and aberrant mRNA splicing in fetal premeiotic germ cells. Interestingly, we observed an increase in DNA oxidation after exposure to BPA analogs. Specific induction of oxidative DNA damages during fetal germ cell differentiation causes similar defects during oogenesis, as observed in 8-Oxoguanine DNA Glycosylase (OGG1) deficient mice or after in utero exposure to potassium bromate (KBrO3), an inducer of oxidative DNA damages. Moreover, the supplementation of N-acetylcysteine (NAC) with BPA analogs counteracts the bisphenol-induced meiotic effect. Together our results position oxidative stress as a central event that negatively impacts the female meiosis with major consequences on oocyte quality. This could be a common mechanism of action for so called endocrine disruptors pollutants and it could lead to novel strategies for reprotoxic compounds.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3