Abstract
AbstractWhile brain temperature is of neurobiological and clinical importance, it is still unclear which factors contribute to its daily dynamics and to what degree. We recorded cortical temperature in mice alongside sleep-wake state during 4 days including a 6h sleep deprivation, and developed a mathematical tool to simulate temperature based on the sleep-wake sequence. The model estimated temperature with remarkable precision accounting for 91% of its variance based on three main factors with the sleep-wake sequence accounting for most of the variance (74%) and time-of-day (‘circadian’) the least (9%). As third factor, prior wake prevalence, was discovered to up-regulate temperature, explaining 43% of the variance. With similar accuracy the model predicted cortical temperature in a second, independent cohort using the parameters optimized for the first. Our model corroborates the profound influence of sleep-wake state on brain temperature, and can help differentiate thermoregulatory from sleep-wake driven effects in experiments affecting both.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献