Females and hermaphrodites of the gynodioecious Geranium maculatum respond similarly to soil nutrient availability

Author:

Putney Katharine,Wolf Mavis,Mason Chase,Chang Shu-MeiORCID

Abstract

AbstractSexual dimorphism in plant growth and/or reproductive responses to the surrounding environment has been documented in some plant species. In gynodioecious plants, it is especially important to understand whether females and hermaphrodites differ in their response to environmental stressors, as the fitness of females relative to hermaphrodites determines the extent to which these separate sexes are maintained in natural populations. Soil nutrient availability is of particular importance given the different nutrient requirements of male and female sexual functions in plants. Here, we evaluated and compared the growth of females and hermaphrodites of Geranium maculatum in response to varying levels of nutrients. Using a greenhouse experiment, we manipulated the overall nutrient, nitrogen, and phosphorus levels in the soil and measured growth, allocation, and leaf quality responses in both females and hermaphrodites. We found that sexes responded similarly in their growth and allocation responses to nutrient availability, albeit evidence that female leaf chlorophyll content may have increased more than that of hermaphrodites across soil nitrogen levels. Our findings demonstrate that hermaphrodites differ from females in terms of their physiological response to varying nutrient levels, however these physiological differences did not translate into meaningful growth or reproduction differences.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3