Abstract
AbstractMicrobes form the base of food webs and drive biogeochemical cycling. Predicting the effects of microbial evolution on global elemental cycles remains a significant challenge due to the sheer number of interacting environmental and trait combinations. Here we present an approach for integrating multivariate trait data into a predictive model of trait evolution. We investigated the outcome of thousands of possible adaptive walks parameterized using empirical evolution data from the alga Chlamydomonas exposed to high CO2. We found that the direction of historical bias (existing trait correlations) influenced both the rate of adaptation and the evolved phenotypes (trait combinations). Critically, we use fitness landscapes derived directly from empirical trait values to capture known evolutionary phenomena. This work demonstrates that ecological models need to represent both changes in traits and changes in the correlation between traits in order to accurately capture phytoplankton evolution and predict future shifts in elemental cycling.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献