Abstract
AbstractAssessment of metabolic energy cost as a metric for human performance has expanded across various fields within the scientific, clinical, and engineering communities. As an alternative to measuring metabolic cost experimentally, musculoskeletal models incorporating metabolic cost models have been developed. However, to utilize these models for practical applications, the accuracy of their metabolic cost predictions requires improvement. Previous studies have reported the benefits of using personalized musculoskeletal models for various applications, yet no study has evaluated how model personalization affects metabolic cost estimation. This study investigated the effect of musculoskeletal model personalization on estimates of metabolic cost of transport (CoT) during post-stroke walking using three commonly used metabolic cost models. We analyzed data previously collected from two male stroke survivors with right-sided hemiparesis. The three metabolic cost models were implemented within three musculoskeletal modeling approaches involving different levels of personalization. The first approach used a scaled generic OpenSim model and found muscle activations via static optimization (SOGen). The second approach used a personalized EMG-driven musculoskeletal model with personalized functional axes but found muscle activations via static optimization (SOCal). The third approach used the same personalized EMG-driven model but calculated muscle activations directly from EMG data (EMGCal). For each approach, the muscle activation estimates were used to calculate each subject’s cost of transport (CoT) at different gait speeds using three metabolic cost models (Umberger 2003, Umberger 2010, and Bhargava 2004). The calculated CoT values were compared with published CoT trends as a function of stance time, double support time, step positions, walking speed, and severity of motor impairment (i.e., Fugl-Meyer score). Overall, U10-SOCal, U10-EMGCal, U03-SOCal, and U03-EMGCal were able to produce slopes between CoT and the different measures of walking asymmetry that were statistically similar to those found in the literature. Although model personalization seemed to improve CoT estimates, further tuning of parameters associated with the different metabolic cost models in future studies may allow for realistic CoT predictions. An improvement in CoT predictions may allow researchers to predict human performance, surgical, and rehabilitation outcomes reliably using computational simulations.
Publisher
Cold Spring Harbor Laboratory