Abstract
AbstractSex differences in behavior and cognition can be driven by differential selection pressures from the environment and in the underlying neuromolecular mechanisms of decision-making. The highly social cichlid fishAstatotilapia burtoniexhibits dynamic and complex social hierarchies, yet explicit cognitive testing (outside of social contexts) and investigations of sex differences in cognition have yet to be fully explored. Here we assessed male and femaleA. burtoniin two cognitive tasks: a novel object recognition task and a spatial task. We hypothesized that males outperform females in a spatial learning task and exhibit more neophilic/exploratory behavior in across both tasks. In the present study we find that both sexes prefer the familiar object in a novel object recognition task, but the time at which they exhibit this preference differs between the sexes. Females more frequently learned the spatial task, exhibiting longer decision latencies and quicker error correction, suggesting a potential speed-accuracy tradeoff.Furthermore, the sexes differ in space use in both tasks and in a principal component analysis of the spatial task. A model selection analysis finds that preference, approach, and interaction duration in the novel object recognition task that reach a threshold of importance averaged across all models. This work highlights the need to explicitly test for sex differences in cognition to better understand how individuals navigate dynamic social environments.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献