Population analysis of Legionella pneumophila reveals the basis of resistance to complement-mediated killing

Author:

Wee Bryan A.,Alves Joana,Lindsay Diane S. J.,Cameron Ross L.,Pickering Amy,Gorzynski Jamie,Corander Jukka,Marttinen Pekka,Smith Andrew J.,Fitzgerald J. RossORCID

Abstract

AbstractLegionella pneumophila is the most common cause of the severe respiratory infection known as Legionnaires’ disease. L. pneumophila is typically a symbiont of free-living amoeba, and our understanding of the bacterial factors that determine human pathogenicity is limited. Here we carried out a population genomic study of 900 L. pneumophila isolates from human clinical and environmental samples to examine their genetic diversity, global distribution and the basis for human pathogenicity. We found that although some clones are more commonly associated with clinical infections, the capacity for human disease is representative of the breadth of species diversity. To investigate the bacterial genetic basis for human disease potential, we carried out a genome-wide association study that identified a single gene (lag-1), to be most strongly associated with clinical isolates. Molecular evolutionary analysis showed that lag-1, which encodes an O-acetyltransferase responsible for lipopolysaccharide modification, has been distributed horizontally across all major phylogenetic clades of L. pneumophila by frequent recent recombination events. Functional analysis revealed a correlation between the presence of a functional lag-1 gene and resistance to killing in human serum and bovine broncho-alveolar lavage. In addition, L. pneumophila strains that express lag-1 escaped complement-mediated phagocytosis by neutrophils. Importantly, we discovered that the expression of lag-1 confers the capacity to evade complement-mediated killing by inhibiting deposition of classical pathway molecules on the bacterial surface. In summary, our combined population and functional analyses identified L. pneumophila genetic traits linked to human disease and revealed the molecular basis for resistance to complement-mediated killing, a previously elusive trait of direct relevance to human disease pathogenicity.SignificanceLegionella pneumophila is an environmental bacterium associated with a severe pneumonia known as Legionnaires’ disease. A small number of L. pneumophila clones are responsible for a large proportion of human infections suggesting they have enhanced pathogenicity. Here, we employed a large-scale population analysis to investigate the evolution of human pathogenicity and identified a single gene (lag-1) that was more frequently found in clinical isolates. Functional analysis revealed that the lag-1-encoded O-acetyltransferase, involved in modification of lipopolysaccharide, conferred resistance to the classical pathway of complement in human serum. These findings solve a long-standing mystery in the field regarding L. pneumophila resistance to serum killing, revealing a novel mechanism by which L. pneumophila may avoid immune defences during infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3