Rapid SARS-CoV-2 Adaptation to Available Cellular Proteases

Author:

Chaudhry M. ZeeshanORCID,Eschke Kathrin,Hoffmann Markus,Grashoff Martina,Abassi Leila,Kim Yeonsu,Brunotte LindaORCID,Ludwig StephanORCID,Kröger AndreaORCID,Klawonn FrankORCID,Pöhlmann Stefan,Cicin-Sain LukaORCID

Abstract

ABSTRACTSince the pandemic spread of SARS-CoV-2, the virus has exhibited remarkable genome stability, but recent emergence of novel variants show virus evolution potential. Here we show that SARS-CoV-2 rapidly adapts to Vero E6 cells that leads to loss of furin cleavage motif in spike protein. The adaptation is achieved by asymptotic expansion of minor virus subpopulations to dominant genotype, but wildtype sequence is maintained at low percentage in the virus swarm, and mediate reverse adaptation once the virus is passaged on human lung cells. The Vero E6-adapted virus show defected cell entry in human lung cells and the mutated spike variants cannot be processed by furin or TMPRSS2. However, the mutated S1/S2 site is cleaved by cathepsins with higher efficiency. Our data show that SARS-CoV-2 can rapidly adapt spike protein to available proteases and advocate for deep sequence surveillance to identify virus adaptation potential and novel variant emergence.Significance StatementRecently emerging SARS-CoV-2 variants B1.1.1.7 (UK), B.1.351 (South Africa) and B.1.1.248 (Brazil) harbor spike mutation and have been linked to increased virus pathogenesis. The emergence of these novel variants highlight coronavirus adaptation and evolution potential, despite the stable consensus genotype of clinical isolates. We show that subdominant variants maintained in the virus population enable the virus to rapidly adapt upon selection pressure. Although these adaptations lead to genotype change, the change is not absolute and genome with original genotype are maintained in virus swarm. Thus, our results imply that the relative stability of SARS-CoV-2 in numerous independent clinical isolates belies its potential for rapid adaptation to new conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3