Base pairing and stacking contributions to double stranded DNA formation

Author:

Zacharias MartinORCID

Abstract

AbstractDouble-strand (ds)DNA formation and dissociation are of fundamental biological importance. The negatively DNA charge influences the dsDNA stability. However, the base pairing and the stacking between neighboring bases are responsible for the sequence dependent stability of dsDNA. The stability of a dsDNA molecule can be estimated from empirical nearest-neighbor models based on contributions assigned to base pair steps along the DNA and additional parameters due to DNA termini. In efforts to separate contributions it has been concluded that base-stacking dominates dsDNA stability whereas base-pairing contributes negligibly. Using a different model for dsDNA formation we re-analyze dsDNA stability contributions and conclude that base stacking contributes already at the level of separate ssDNAs but that pairing contributions drive the dsDNA formation. The theoretical model also predicts that stability contributions of base pair steps that contain only guanine/cytosine, mixed steps and steps with only adenine/thymine follows the order 6:5:4, respectively, as expected based on the formed hydrogen bonds. The model is fully consistent with available stacking data and nearest-neighbor dsDNA parameters. It allows to assign a narrowly distributed value for the effective free energy contribution per formed hydrogen bond during dsDNA formation of −0.72 kcal·mol-1based entirely on experimental data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3