State-dependent changes in perception and coding in the mouse somatosensory cortex

Author:

Lee Conrad CYORCID,Kheradpezhouh Ehsan,Diamond Mathew E.,Arabzadeh Ehsan

Abstract

SUMMARYAn animal’s behavioral state is reflected in the dynamics of cortical population activity and its capacity to process sensory information. To better understand the relationship between behavioral states and information processing, mice are trained to detect varying amplitudes of whisker-deflection under two-photon calcium imaging. Layer 2/3 neurons (n=1436) in the vibrissal primary somatosensory cortex are imaged across different behavioral states, defined based on detection performance (low to high-state) and pupil diameter. The neurometric curve in each behavioral state mirrors the corresponding psychometric performance, with calcium signals predictive of the animal’s choice outcome. High behavioral states are associated with lower network synchrony, extending over shorter cortical distances. The decrease of correlations in variability across neurons in the high state results in enhanced information transmission capacity at the population level. The observed state-dependent changes suggest that the coding regime within the first stage of cortical processing may underlie adaptive routing of relevant information through the sensorimotor system.HighlightsNetwork synchrony and pupil diameter are coupled to changes in behavioral state.High behavioral state results in enhanced information transmission capacity at the population level, with neurometric curve in each behavioral state mirroring the corresponding psychometric performanceBehavioral state and calcium signal in primary somatosensory cortex predict choice outcome.eTOCIn BriefLee et al. investigates the relationship between behavioral states and information processing in the primary somatosensory cortex. They demonstrate increases in behavioral state results in decrease cortical variability, enhanced information transmission capacity and stimulus encoding at the population level.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3