Optogenetic delivery of trophic signals in a genetic model of Parkinson’s disease

Author:

Inglés-Prieto Álvaro,Furthmann Nikolas,Crossman Samuel,Hoyer Nina,Petersen Meike,Zheden Vanessa,Biebl Julia,Reichhart Eva,György Attila,Siekhaus Daria,Soba Peter,Winklhofer Konstanze F.,Janovjak HaraldORCID

Abstract

AbstractOptogenetics has been harnessed to shed new mechanistic light on current therapies and to develop future treatment strategies. This has been to date achieved by the correction of electrical signals in neuronal cells and neural circuits that are affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and thereby may modify progression of degenerative disorders, has never been demonstrated in an animal disease model. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson’s disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to overcome limitations of current strategies towards a spatio-temporal regulation of tissue repair.Significance StatementThe death of physiologically important cell populations underlies of a wide range of degenerative disorders, including Parkinson’s disease (PD). Two major strategies to counter cell degeneration, soluble growth factor injection and growth factor gene therapy, can lead to the undesired activation of bystander cells and non-natural permanent signaling responses. Here, we employed optogenetics to deliver cell type-specific pro-survival signals in a genetic model of PD. In Drosophila and human cells exhibiting loss of the PINK1 kinase, akin to autosomal recessive PD, we efficiently suppressed disease phenotypes using a light-activated tyrosine kinase receptor. This work demonstrates a spatio-temporally precise strategy to interfere with degeneration and may open new avenues towards tissue repair in disease models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3