An organotypic in vitro model of matured blood vessels

Author:

Lee Jaehyun,Lee EsakORCID

Abstract

AbstractAngiogenesis is a physiological process in which brand-new blood vessels are formed from pre-existing blood vessels. The angiogenic processes are achieved by multiple steps, including angiogenic vascular sprouting, lumen formation, mural cell (e.g., smooth muscle cells) recruitment, and vessel stabilization by the mural cell coverage of the neovessels. Especially, mural cell recruitment to and coverage of the newly formed endothelium is a fundamental process to provide fully matured, functional blood vessels. Although investigation of the mural cell interactions with endothelial cells is crucial not only for better understanding of vascular physiology, but also for treating numerous vascular diseases, there has been a lack of three-dimensional (3D) in vitro models that recapitulate spontaneous processes of the vascular maturation. In this study, we describe an organotypic in vitro model that represents multi-step, spontaneous vascular maturation processes, which includes angiogenic vessel sprouting, smooth muscle cell (SMC) recruitment, and the SMC coverage of the neovessels. Using the system, we could spatiotemporally control vessel sprouting and vessel stabilization/maturation; and revealed an optimal condition that could reconstitute SMC-covered, matured blood vessels in 3D in vitro. We may provide a new platform for future mechanism studies of vascular interactions to mural cells and vessel maturation; and for pre-clinical screening and validation of therapeutic agent candidates for treating vascular diseases.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3