Author:
Nair Anjana Ramdas,Delaney Patrice,Ranjan Shashi,Khan Nouf,Palmer Catherine,Sadler Kirsten C.
Abstract
ABSTRACTReproducibility and consistency are hallmarks of scientific integrity. Biological systems are inherently noisy, posing a challenge to reproducibility. This is particularly relevant to the field of environmental toxicology, where many unaccounted experimental parameters can have a marked influence on the biological response to exposure. Here, we extend the use of zebrafish as a robust toxicological model for studying the effects of inorganic arsenic (iAs) on liver biology. We observed that iAs toxicity in this system is not influenced by important parameters including genetic background, rearing container material or rearing volume but the dose response to iAs is influenced by the rearing medium. We compared mortality as a measure of iAs toxicity to embryos cultured in two standard rearing media: egg water made from dehydrated ocean salts dissolved in water and a defined embryo medium which is a pH adjusted, buffered salt solution. Larvae reared in egg water were more susceptible to iAs compared to those reared in embryo medium. This effect was independent of the pH differences between these solutions. These culture conditions did not cause any difference in the global hepatic transcriptome of control zebrafish. Further, no difference in the expression of genes involved in the unfolded protein response (UPR) in larvae exposed to iAs treatment or in a stress independent system to activate UPR genes by transgenic overexpression of activating transcription factor 6 (nAtf6) in hepatocytes was observed. However, the clutch-to-clutch variation in gene expression was significantly greater in larvae reared in egg water compared to those in embryo medium. These data demonstrate that egg water affects reproducibility across replicates in terms of gene expression and exacerbates iAs mediated toxic response. This highlights the importance of rigorous evaluation of experimental conditions to assure reproducibility.
Publisher
Cold Spring Harbor Laboratory