TLR4 signaling and macrophage inflammatory responses are dampened by GIV/Girdin

Author:

Swanson Lee,Katkar Gajanan D.,Tam Julian,Pranadinata Rama F.,Chareddy Yogitha,Coates Jane,Amandachar Mahitha Shree,Castillo Vanessa,Olson Joshua,Nizet Victor,Kufareva Irina,Das Soumita,Ghosh PradiptaORCID

Abstract

AbstractSensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflammatory response; controlled responses confer immunity but uncontrolled responses cause harm. Here we define how a multi-modular scaffold, GIV (a.k.a Girdin) titrates such inflammatory response in macrophages. Upon challenge with either live microbes or microbe-derived lipopolysaccharides (LPS, a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and suppress pro-inflammatory cytokines and signaling pathways (i.e., NFkB and CREB) downstream of TLR4 compared to their GIV-depleted counterparts. Myeloid-specific gene depletion studies confirmed that the presence of GIV ameliorates DSS-induced colitis and sepsis-induced death. The anti-inflammatory actions of GIV are mediated via its C-terminally located TIR-like BB-loop (TILL)-motif which binds the cytoplasmic TIR-modules of TLR4 in a manner that precludes receptor dimerization; the latter is a pre-requisite for pro-inflammatory signaling. Binding of GIV’s TILL motif to other TIR modules inhibits pro-inflammatory signaling via other TLRs, suggesting a convergent paradigm for fine-tuning macrophage inflammatory responses.SignificanceTo ensure immunity, and yet limit pathology, inflammatory responses must be confined within the proverbial ‘Goldilocks zone’. TLR4 is the prototypical sensor that orchestrates inflammatory responses through a series of well characterized downstream cascades. How TLR4 signals are confined remain incompletely understood. Using trans-scale approaches ranging from disease modeling in live animals, through cell-based interventional studies, to structure-guided biochemical studies that offer an atomic-level resolution, this study unravels the existence of a ‘brake’ within the TLR4 signaling cascade, i.e., GIV; the latter is a prototypical member of an emerging class of scaffold proteins. By showing that GIV uses conserved mechanisms to impact multi-TLR signaling, this work unravels a multi-scale point of convergence of immune signaling of broader impact beyond TLR4.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3