Controlling for effects of confounding variables on machine learning predictions

Author:

Dinga Richard,Schmaal Lianne,Penninx Brenda W.J.H.,Veltman Dick J.,Marquand Andre F.

Abstract

ABSTRACTMachine learning predictive models are being used in neuroimaging to predict information about the task or stimuli or to identify potentially clinically useful biomarkers. However, the predictions can be driven by confounding variables unrelated to the signal of interest, such as scanner effect or head motion, limiting the clinical usefulness and interpretation of machine learning models. The most common method to control for confounding effects is regressing out the confounding variables separately from each input variable before machine learning modeling. However, we show that this method is insufficient because machine learning models can learn information from the data that cannot be regressed out. Instead of regressing out confounding effects from each input variable, we propose controlling for confounds post-hoc on the level of machine learning predictions. This allows partitioning of the predictive performance into the performance that can be explained by confounds and performance independent of confounds. This approach is flexible and allows for parametric and non-parametric confound adjustment. We show in real and simulated data that this method correctly controls for confounding effects even when traditional input variable adjustment produces false-positive findings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3