Nonlinear delay differential equations and their application to modeling biological network motifs

Author:

Glass David S.ORCID,Jin Xiaofan,Riedel-Kruse Ingmar H.ORCID

Abstract

AbstractBiological regulatory systems, such as transcription factor or kinase networks, nervous systems and ecological webs, consist of complex dynamical interactions among many components. “Network motif” models focus on small sub-networks to provide quantitative insight into overall behavior. However, conventional network motif models often ignore time delays either inherent to biological processes or associated with multi-step interactions. Here we systematically examine explicit-delay versions of the most common network motifs via delay differential equations (DDEs), both analytically and numerically. We find many broadly applicable results, such as the reduction in number of parameters compared to canonical descriptions via ordinary differential equations (ODE), criteria for when delays may be ignored, a complete phase space for autoregulation, explicit dependence of feedforward loops on a difference of delays, a unified framework for Hill-function logic, and conditions for oscillations and chaos. We emphasize relevance to biological function throughout our analysis, summarize key points in non-mathematical form, and conclude that explicit-delay modeling simplifies the phenomenological understanding of many biological networks and may aid in discovering new functional motifs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3