Causal Evaluation of Laboratory Markers in Type 2 Diabetes on Cancer and Vascular Diseases Using Various Mendelian Randomization Tools

Author:

Jin Heejin,Lee Sanghun,Won Sungho

Abstract

AbstractMultiple studies have demonstrated the effects of type 2 diabetes (T2D) on various human diseases; however, most of these were observational epidemiological studies that suffered from many potential biases including reported confounding and reverse causations. In this article, we investigated whether cancer and vascular disease can be affected by T2D-related traits, including fasting plasma glucose (FPG), 2-h postprandial plasma glucose (2h-PG), and glycated hemoglobin A1c (HbA1c) levels, by using Mendelian randomization (MR). The summary statistics for FPG, 2h-PG, and HbA1c were obtained through meta-analyses of large-scale genome-wide association studies that included data from 133,010 non-diabetic individuals from collaborating Meta-Analysis of Glucose and Insulin related traits Consortium studies. Thereafter, based on the statistical assumptions for MR analyses, the most reliable approaches including inverse-variance-weighted (IVW), MR-Egger, MR-Egger with a simulation extrapolation (SIMEX), weighted median and MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) methods were applied to identify traits affected by FPG, 2h-PG, and HbA1c. We found that coronary artery disease is affected by FPG, as per the IVW [log odds ratio (logOR): 0.21; P=0.012], MR-Egger (SIMEX) (logOR: 0.22; P=0.014), MR-PRESSO (logOR: 0.18; P=0.045), and weighted median (logOR: 0.29; P<0.001) methods, but not as per the MR-Egger (logOR: 0.13; P=0.426) approach. Furthermore, low-density lipoprotein cholesterol levels are affected by HbA1c, as per the IVW (beta (B): 0.23; P=0.015), MR-Egger (B: 0.45; P=0.046), MR-Egger (SIMEX) (B: 0.27; P=0.007), MR-PRESSO (B; 0.14; P=0.010), and the weighted median (B: 0.15; P=0.012) methods. Further studies of the associated biological mechanisms are required to validate and understand the disease-specific differences identified in the TD2-related causal effects of each trait.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3