Increased oscillatory power in a computational model of the olfactory bulb due to synaptic degeneration

Author:

Berry J. KendallORCID,Cox Daniel

Abstract

AbstractSeveral neurodegenerative diseases impact the olfactory system, and in particular the olfactory bulb, early in disease progression. One mechanism by which damage occurs is via synaptic dysfunction. Here, we implement a computational model of the olfactory bulb and investigate the effect of weakened connection weights on network oscillatory behavior. Olfactory bulb network activity can be modeled by a system of equations that describes a set of coupled nonlinear oscillators. In this modeling framework, we propagate damage to synaptic weights using several strategies, varying from localized to global. Damage propagated in a dispersed or spreading manner leads to greater oscillatory power at moderate levels of damage. This increase arises from a higher average level of mitral cell activity due to a shift in the balance between excitation and inhibition. That this shift leads to greater oscillations critically depends on the nonlinearity of the activation function. Linearized analysis of the network dynamics predicts when this shift leads to loss of oscillatory activity. We thus demonstrate one potential mechanism involved in the increased gamma oscillations seen in some animal models of Alzheimer’s disease and highlight the potential that pathological olfactory bulb behavior presents as an early biomarker of disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3