Abstract
SummaryNeuronal activity can influence the generation of new oligodendrocytes (oligodendrogenesis) and myelination. In health, this is an adaptive process that can increase synchrony within distributed neuronal networks and contribute to cognitive function. We hypothesized that in seizure disorders, aberrant neuronal activity may promote maladaptive myelination that contributes to pathogenesis. Absence epilepsy is a disease defined by increasingly frequent behavioral arrest seizures over time, thought to be due to thalamocortical network hypersynchrony. We tested the hypothesis that activity-dependent myelination resulting from absence seizures promotes epileptogenesis. Using two distinct models of absence epilepsy, Wag/Rij rats and Scn8a+/mut mice, we found increased oligodendrogenesis and myelination specifically within the absence seizure network. These changes are evident only after seizure onset in both models and are prevented with pharmacological inhibition of seizures. Genetic blockade of activity-dependent myelination during epileptogenesis markedly decreased seizure frequency in the Scn8a+/mut mouse model of absence epilepsy. Taken together, these findings indicate that activity-dependent myelination driven by absence seizures contributes to seizure kindling during epileptogenesis.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献