Flagellar energetics from high-resolution imaging of beating patterns in tethered mouse sperm

Author:

Nandagiri Ashwin,Gaikwad Avinash S.,Potter David L.,Nosrati Reza,Soria Julio,O’Bryan Moira K.,Jadhav Sameer,Prabhakar RanganathanORCID

Abstract

AbstractWhile much is known about the microstructure of sperm flagella, the mechanisms behind the generation of flagellar beating patterns by the axoneme are still not fully understood. We demonstrate a technique for investigating the energetics of flagella or cilia. We record the planar beating of tethered wildtype and Crisp2-knockout mouse sperm at high-speed and high-resolution and extract centerlines using digital image processing techniques. We accurately reconstruct beating waveforms using a Chebyshev-polynomial based Proper Orthogonal Decomposition of the centerline tangent-angle profiles. External hydrodynamic forces and the internal resistance from the passive flagellar material are calculated from the observed kinematics of the beating patterns using a Soft, Internally-Driven Kirchhoff-Rod (SIDKR) model. Energy conservation is employed to further compute the flagellar energetics. We thus obtain the distribution of mechanical power exerted by the dynein motors without any further assumptions about mechanisms regulating axonemal function. We find that, in both the mouse genotypes studied, a large proportion of the mechanical power exerted by the dynein motors is dissipated internally, within the passive structures of the flagellum and by the motors themselves. This internal dissipation is considerably greater than the hydrodynamic dissipation in the aqueous medium outside. The net power input from the dynein motors in sperm from Crisp2-knockout mice is significantly smaller than in corresponding wildtype samples. The reduced power is correlated with slower beating and smaller amplitudes. These measurements of flagellar energetics indicate that the ion-channel regulating cysteine-rich secretory proteins (CRISPs) may also be involved in regulating mammalian sperm motility.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3