Dynamics of infection in a novel group of promiscuous phages and hosts of multiple bacterial genera retrieved from river communities

Author:

Cazares DanielORCID,Cazares Adrian,Figueroa Wendy,Guarneros Gabriel,Edwards Robert A.,Vinuesa Pablo

Abstract

AbstractPhages are generally described as species- or even strain-specific viruses, implying an inherent limitation for some to be maintained and spread in diverse bacterial communities. Moreover, phage isolation and host range determination rarely consider the phage ecological context, likely biasing our notion on phage specificity. Here we identified and characterized a novel group of promiscuous phages existing in rivers by using diverse bacteria isolated from the same samples, and then used this biological system to investigate infection dynamics in distantly related hosts. We assembled a diverse collection of over 600 native bacterial strains and used them to isolate six podophages, named Atoyac, from different geographic origin and capable of infecting six genera in the Gammaproteobacteria. Atoyac phage genomes are highly similar to each other but not to those currently available in the genome and metagenome public databases. Detailed comparison of the phage’s infectivity in diverse hosts and trough hundreds of interactions revealed variation in plating efficiency amongst bacterial genera, implying a cost associated with infection of distant hosts, and between phages, despite their sequence similarity. We show, through experimental evolution in single or alternate hosts of different genera, that plaque production efficiency is highly dynamic and tends towards optimization in hosts rendering low plaque formation. Complex adaptation outcomes observed in the evolution experiments differed between highly similar phages and suggest that propagation in multiple hosts may be key to maintain promiscuity in some viruses. Our study expands our knowledge of the virosphere and uncovers bacteria-phage interactions overlooked in natural systems.ImportanceIn natural environments, phages co-exist and interact with a broad variety of bacteria, posing a conundrum for narrow-host-range phages maintenance in diverse communities. This context is rarely considered in the study of host-phage interactions, typically focused on narrow-host-range viruses and their infectivity in target bacteria isolated from sources distinct to where the phages were retrieved from. By studying phage-host interactions in bacteria and viruses isolated from river microbial communities, we show that novel phages with promiscuous host range encompassing multiple bacterial genera can be found in the environment. Assessment of hundreds of interactions in diverse hosts revealed that similar phages exhibit different infection efficiency and adaptation patterns. Understanding host range is fundamental in our knowledge of bacteria-phage interactions and their impact in microbial communities. The dynamic nature of phage promiscuity revealed in our study has implications in different aspects of phage research such as horizontal gene transfer or phage therapy.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Ackermann H-W. Viruses of Prokaryotes: General Properties of Bacteriophages. 1987.

2. Hyman P , Abedon ST . Bacteriophage Host Range and Bacterial Resistance. 2010. Elsevier, pp 217–248.

3. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases

4. Understanding Bacteriophage Specificity in Natural Microbial Communities

5. Molecular and Evolutionary Determinants of Bacteriophage Host Range

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3