Embryo CHH hypermethylation is mediated by RdDM and is autonomously directed in Brassica rapa

Author:

Chakraborty TaniaORCID,Kendall Timmy,Grover Jeffrey W.ORCID,Mosher Rebecca A.ORCID

Abstract

AbstractBackgroundRNA directed DNA methylation (RdDM) initiates cytosine methylation in all contexts, and maintains asymmetric CHH methylation (where H is any base other than G). Mature plant embryos show one of the highest levels of CHH methylation, and it has been suggested that RdDM is responsible for this hypermethylation. Because loss of RdDM in Brassica rapa causes seed abortion, embryo methylation might play a role in seed development. RdDM is required in the maternal sporophyte, suggesting that small RNAs from the maternal sporophyte might translocate to the developing embryo, triggering DNA methylation that prevents seed abortion. This raises the question whether embryo hypermethylation is autonomously regulated by the embryo itself or influenced by the maternal sporophyte.ResultsHere, we demonstrate that B. rapa embryos are hypermethylated in both euchromatin and heterochromatin and that this process requires RdDM. Contrary to current models, B. rapa embryo hypermethylation is not correlated with demethylation of the endosperm. We also show that maternal somatic RdDM is not sufficient for global embryo hypermethylation, and we find no compelling evidence for maternal somatic influence over embryo methylation at any locus. Decoupling of maternal and zygotic RdDM leads to successful seed development despite loss of embryo CHH hypermethylation.ConclusionsWe conclude that embryo CHH hypermethylation is conserved, autonomously controlled, and not required for embryo development. Furthermore, maternal somatic RdDM, while required for seed development, does not directly influence embryo methylation patterns.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3