The effect of stimulus intensity on neural envelope tracking

Author:

Verschueren ElineORCID,Vanthornhout JonasORCID,Francart TomORCID

Abstract

ABSTRACTObjectivesThe last years there has been significant interest in attempting to recover the temporal envelope of a speech signal from the neural response to investigate neural speech processing. The research focus is now broadening from neural speech processing in normal-hearing listeners towards hearing-impaired listeners. When testing hearing-impaired listeners speech has to be amplified to resemble the effect of a hearing aid and compensate peripheral hearing loss. Until today, it is not known with certainty how or if neural speech tracking is influenced by sound amplification. As these higher intensities could influence the outcome, we investigated the influence of stimulus intensity on neural speech tracking.DesignWe recorded the electroencephalogram (EEG) of 20 normal-hearing participants while they listened to a narrated story. The story was presented at intensities from 10 to 80 dB A. To investigate the brain responses, we analyzed neural tracking of the speech envelope by reconstructing the envelope from EEG using a linear decoder and by correlating the reconstructed with the actual envelope. We investigated the delta (0.5-4 Hz) and the theta (4-8 Hz) band for each intensity. We also investigated the latencies and amplitudes of the responses in more detail using temporal response functions which are the estimated linear response functions between the stimulus envelope and the EEG.ResultsNeural envelope tracking is dependent on stimulus intensity in both the TRF and envelope reconstruction analysis. However, provided that the decoder is applied on data of the same stimulus intensity as it was trained on, envelope reconstruction is robust to stimulus intensity. In addition, neural envelope tracking in the delta (but not theta) band seems to relate to speech intelligibility. Similar to the linear decoder analysis, TRF amplitudes and latencies are dependent on stimulus intensity: The amplitude of peak 1 (30-50 ms) increases and the latency of peak 2 (140-160 ms) decreases with increasing stimulus intensity.ConclusionAlthough brain responses are influenced by stimulus intensity, neural envelope tracking is robust to stimulus intensity when using the same intensity to test and train the decoder. Therefore we can assume that intensity is not a confound when testing hearing-impaired participants with amplified speech using the linear decoder approach. In addition, neural envelope tracking in the delta band appears to be correlated with speech intelligibility, showing the potential of neural envelope tracking as an objective measure of speech intelligibility.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3