Evolution of dynamical networks enhances catalysis in a designer enzyme

Author:

Bunzel H. AdrianORCID,Anderson J. L. RossORCID,Hilvert DonaldORCID,Arcus Vickery L.ORCID,van der Kamp Marc W.ORCID,Mulholland Adrian J.ORCID

Abstract

AbstractActivation heat capacity is emerging as a crucial factor in enzyme thermoadaptation, as shown by non-Arrhenius behaviour of many natural enzymes1,2. However, its physical origin and relationship to evolution of catalytic activity remain uncertain. Here, we show that directed evolution of a computationally designed Kemp eliminase introduces dynamical changes that give rise to an activation heat capacity absent in the original design3. Extensive molecular dynamics simulations show that evolution results in the closure of solvent exposed loops and better packing of the active site with transition state stabilising residues. Remarkably, these changes give rise to a correlated dynamical network involving the transition state and large parts of the protein. This network tightens the transition state ensemble, which induces an activation heat capacity and thereby nonlinearity in the temperature dependence. Our results have implications for understanding enzyme evolution (e.g. in explaining the role of distal mutations and evolutionary tuning of dynamical responses) and suggest that integrating dynamics with design and evolution will accelerate the development of efficient novel enzymes.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3