The SARS-CoV-2 Envelope and Membrane proteins modulate maturation and retention of the Spike protein, allowing optimal formation of VLPs in presence of Nucleoprotein

Author:

Boson Bertrand,Legros VincentORCID,Zhou BingjieORCID,Mathieu CyrilleORCID,Cosset François-Loïc,Lavillette DimitriORCID,Denolly SolèneORCID

Abstract

AbstractThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a β-coronavirus, is the causative agent of the COVID-19 pandemic. Like for other coronaviruses, its particles are composed of four structural proteins, namely Spike S, Envelope E, Membrane M and Nucleoprotein N proteins. The involvement of each of these proteins and their interplays during the assembly process of this new virus are poorly-defined and are likely β-coronavirus-type different. Therefore, we sought to investigate how SARS-CoV-2 behaves for its assembly by expression assays of S, in combination with E, M and/or N. By combining biochemical and imaging assays, we showed that E and M regulate intracellular trafficking of S and hence its furin-mediated processing. Indeed, our imaging data revealed that S remains at ERGIC or Golgi compartments upon expression of E or M, like for SARS-CoV-2 infected cells. By studying a mutant of S, we showed that its cytoplasmic tail, and more specifically, its C-terminal retrieval motif, is required for the M-mediated retention in the ERGIC, whereas E induces S retention by modulating the cell secretory pathway. We also highlighted that E and M induce a specific maturation of S N-glycosylation, which is observed on particles and lysates from infected cells independently of its mechanisms of intracellular retention. Finally, we showed that both M, E and N are required for optimal production of virus-like-proteins. Altogether, our results indicated that E and M proteins influence the properties of S proteins to promote assembly of viral particles. Our results therefore highlight both similarities and dissimilarities in these events, as compared to other β-coronaviruses.Author SummaryThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic. Its viral particles are composed of four structural proteins, namely Spike S, Envelope E, Membrane M and Nucleoprotein N proteins, though their involvement in the virion assembly remain unknown for this particular coronavirus. Here we showed that presence of E and M influence the localization and maturation of S protein, in term of cleavage and N-glycosylation maturation. Indeed, E protein is able to slow down the cell secretory pathway whereas M-induced retention of S requires the retrieval motif in S C-terminus. We also highlighted that E and M might regulate the N glycosylation maturation of S independently of its intracellular retention mechanism. Finally, we showed that the four structural proteins are required for optimal formation of virus-like particles, highlighting the involvement of N, E and M in assembly of infectious particles. Altogether, our results highlight both similarities and dissimilarities in these events, as compared to other β-coronaviruses.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. WHO. Coronavirus disease (COVID-2019) situation reports. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.

2. Molecular Interactions in the Assembly of Coronaviruses

3. The Molecular Biology of Coronaviruses

4. Coronavirus envelope protein: current knowledge

5. Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3