Abstract
AbstractThe increasing body of literature describing the role of host factors in COVID-19 pathogenesis demonstrates the need to combine diverse, multi-omic data to evaluate and substantiate the most robust evidence and inform development of therapies.Here we present a dynamic ranking of host genes implicated in human betacoronavirus infection (SARS-CoV-2, SARS-CoV, MERS-CoV, seasonal coronaviruses). Researchers can search and review the ranked genes and the contribution of different experimental methods to gene rank at https://baillielab.net/maic/covid19.We conducted an extensive systematic review of experiments identifying potential host factors. Gene lists from diverse sources were integrated using Meta-Analysis by Information Content (MAIC). This previously described algorithm uses data-driven gene list weightings to produce a comprehensive ranked list of implicated host genes.From 32 datasets, the top ranked gene was PPIA, encoding cyclophilin A, a drug-gable target using cyclosporine.Other highly-ranked genes included proposed prognostic factors (CXCL10, CD4, CD3E) and investigational therapeutic targets (IL1A) for COVID-19. Gene rankings also inform the interpretation of COVID-19 GWAS results, implicating FYCO1 over other nearby genes in a disease-associated locus on chromosome 3.As new data are published we will regularly update list of genes as a resource to inform and prioritise future studies.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献