Abstract
AbstractCell penetrating peptides (CPP) are increasingly used for cellular drug delivery in both pro- and eukaryotic cells, and oligoarginines have attracted special attention. However; their mechanism of action, particularly for prokaryotes is still unknown. Arginine-rich CPPs (R-CPP) efficiently delivers the antimicrobial peptide nucleic acid (PNA) into bacteria. Here, we show that resistance to an R-CPP PNA conjugate inEscherichia colirequires multiple genetic modifications and is specific to R-CPP and not to the PNA-part. An integral part of the resistance was the constitutively activated Cpx-envelope stress response system (cpx*), which decreased the cytoplasmic membrane potential and thereby indicates an indirectly energy dependent uptake mechanism. Interestingly,cpx* mutants also showed increased tolerance to aminoglycosides and R-CPP conjugated to a peptide targeting the DNA sliding clamp; i.e., similar uptake inE. colifor these antimicrobial compounds. We speculate that thecpx* phenotype could create an evolutionary opportunity to adapt and evolve in the presence of either compounds.Author summaryThe emergence of multidrug resistant bacteria is raising the need for new classes of antibiotics. Peptide nucleic acids (PNAs) may fill this requirement by their ability to block translation of essential mRNAs and hence inhibit growth. PNA needs conjugation to a delivery peptide (cell penetrating peptide; CPP) to enter the bacteria. Arginine-rich CPPs (CPPR) are receiving a lot of attention for use as delivery vessels. Here, we show, for the first time, CPPR-PNA resistance inEscherichia colidirected towards the delivery peptide. Consequently, resistance also applies to other antimicrobial compounds delivered by the same carrier. An integral part of CPPRresistance is due to a constitutive active Cpx-response system, which leads to a decreased electric potential (ΔΨ) across the inner membrane. The decreased ΔΨis a result of down-regulation of two aerobic respiratory operons, namely NADH:ubiquinone oxidoreductase complex I and cytochrome bo3ubiquinol oxidase. The decreased ΔΨalso led to increased tolerance to aminoglycosides. This shows that a (large) negative ΔΨis important for providing sufficient free energy for membrane translocation of both CPPRand that the inner membrane is the main barrier for entry of both arginine-rich delivery peptides and aminoglycosides.
Publisher
Cold Spring Harbor Laboratory