A Statistical Framework for QTL Hotspot Detection

Author:

Wu Po-Ya,Yang Man-Hsia,Kao Chen-Hung

Abstract

ABSTRACTQuantitative trait loci (QTL) hotspots (genomic locations enriched in QTL) are a common and notable feature when collecting many QTL for various traits in many areas of biological studies. The QTL hotspots are important and attractive since they are highly informative and may harbor genes for the quantitative traits. So far, the current statistical methods for QTL hotspot detection use either the individual-level data from the genetical genomics experiments or the summarized data from public QTL databases to proceed with the detection analysis. These detection methods attempt to address some of the concerns, including the correlation structure among traits, the magnitude of LOD scores within a hotspot and computational cost, that arise during the process of QTL hotspot detection. In this article, we describe a statistical framework that can handle both types of data as well as address all the concerns at a time for QTL hotspot detection. Our statistical framework directly operates on the QTL matrix and hence has a very cheap computation cost, and is deployed to take advantage of the QTL mapping results for assisting the detection analysis. Two special devices, trait grouping and top γn,αprofile, are introduced into the framework. The trait grouping attempts to group the closely linked or pleiotropic traits together to take care of the true linkages and cope with the underestimation of hotspot thresholds due to non-genetic correlations (arising from ignoring the correlation structure among traits), so as to have the ability to obtain much stricter thresholds and dismiss spurious hotspots. The top γn,αprofile is designed to outline the LOD-score pattern of a hotspot across the different hotspot architectures, so that it can serve to identify and characterize the types of QTL hotspots with varying sizes and LOD score distributions. Real examples, numerical analysis and simulation study are performed to validate our statistical framework, investigate the detection properties, and also compare with the current methods in QTL hotspot detection. The results demonstrate that the proposed statistical framework can effectively accommodate the correlation structure among traits, identify the types of hotspots and still keep the notable features of easy implementation and fast computation for practical QTL hotspot detection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3