Ciliary signaling-patterned smooth muscle drives tubular elongation

Author:

Yang Ying,Paivinen Pekka,Xie Chang,Krup Alexis Leigh,Makela Tomi P.,Mostov Keith E.,Reiter Jeremy F.ORCID

Abstract

SummaryDuring development, many tubular organs undergo extensive longitudinal growth to reach their defined length, essential for their function, but how they lengthen is poorly understood. Here, we found that primary cilia are critical for the elongation of the small intestine and esophagus during murine embryonic development. More specifically, HH ligands produced by the epithelium signaled via cilia in the surrounding mesenchyme to pattern the smooth muscle. Like attenuated ciliary HH signaling, partial ablation of the smooth muscle reduced elongation, revealing an essential role for smooth muscle in longitudinal growth. Disruption of cilia, HH signaling or the smooth muscle reduced residual stress within the gut wall, indicating that smooth muscle contributes to the mechanical properties of the developing gut. Reducing residual stress decreased nuclear YAP, an effector of the mechanotransductive Hippo pathway. Removing YAP in the mesenchyme did not affect smooth muscle formation, but attenuated proliferation and elongation, demonstrating that YAP interprets smooth muscle-generated force to promote proliferation. Together, our results reveal that ciliary signaling directs the formation of the smooth muscle layer which, in turn, generates mechanical forces that activate YAP-mediated proliferation. As this interplay of biochemical and mechanical signals drives elongation of both the esophagus and small intestine, we propose that this mechanism may underlie tubular organ elongation generally.HighlightsPrimary cilia are essential for the elongation of the small intestine and esophagus during embryonic developmentCiliary signaling patterns the smooth muscle in the developing intestine and esophagusThe smooth muscle contributes to tissue mechanicsSmooth muscle-generated strain activates YAP to drive longitudinal growth of the tubular organs

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Embryonic Development of Motility: Lessons from the Chicken;Advances in Experimental Medicine and Biology;2022

2. How Smooth Muscle Contractions Shape the Developing Enteric Nervous System;Frontiers in Cell and Developmental Biology;2021-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3