Abstract
AbstractSelf-assembly of proteins holds great promise for the bottom-up design and production of synthetic biomaterials. In conventional approaches, designer proteins are pre-programmed with specific recognition sites that drive the association process towards a desired organized state. Although proven effective, this approach poses restrictions on the complexity and material properties of the end-state. An alternative, hierarchical approach that has found wide adoption for inorganic systems, relies on the production of crystalline nanoparticles which in turn become the building blocks of a next-level assembly process driven by oriented attachment (OA). As it stands, OA has not been observed for proteins. Here we employ cryoEM in the high nucleation rate limit of protein crystals and map the self-assembly route at molecular resolution. We observe the initial formation of facetted nanocrystals that merge lattices by means of OA alignment well before contact is made, satisfying non-trivial symmetry rules in the process. The OA mechanism yields crystal morphologies that are not attainable through conventional crystallization routes. Based on these insights we revisit a system of protein crystallization that has long been classified as non-classical, but our data is in direct conflict with that conclusion supporting a classical mechanism that implicates OA. These observations raise further questions about past conclusions for other proteins and illustrate the importance of maturation stages after primary nucleation has taken place.
Publisher
Cold Spring Harbor Laboratory