Nonclassical nucleation of protein mesocrystals via oriented attachment

Author:

Van Driessche Alexander E.S.ORCID,Van Gerven Nani,Joosten Rick R.M.,Ling Wai LiORCID,Bacia Maria,Schoehn GuyORCID,Sommerdijk Nico A.J.M.ORCID,Sleutel MikeORCID

Abstract

AbstractSelf-assembly of proteins holds great promise for the bottom-up design and production of synthetic biomaterials. In conventional approaches, designer proteins are pre-programmed with specific recognition sites that drive the association process towards a desired organized state. Although proven effective, this approach poses restrictions on the complexity and material properties of the end-state. An alternative, hierarchical approach that has found wide adoption for inorganic systems, relies on the production of crystalline nanoparticles which in turn become the building blocks of a next-level assembly process driven by oriented attachment (OA). As it stands, OA has not been observed for proteins. Here we employ cryoEM in the high nucleation rate limit of protein crystals and map the self-assembly route at molecular resolution. We observe the initial formation of facetted nanocrystals that merge lattices by means of OA alignment well before contact is made, satisfying non-trivial symmetry rules in the process. The OA mechanism yields crystal morphologies that are not attainable through conventional crystallization routes. Based on these insights we revisit a system of protein crystallization that has long been classified as non-classical, but our data is in direct conflict with that conclusion supporting a classical mechanism that implicates OA. These observations raise further questions about past conclusions for other proteins and illustrate the importance of maturation stages after primary nucleation has taken place.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3