The innate and adaptive immune landscape of SARS-CoV-2-associated Multisystem Inflammatory Syndrome in Children (MIS-C) from acute disease to recovery

Author:

Syrimi Eleni,Fennell Eanna,Richter AlexORCID,Vrljicak Pavle,Stark Richard,Ott Sascha,Murray Paul G,Al-Abadi Eslam,Chikermane Ashish,Dawson Pamela,Hackett Scott,Jyothish Deepthi,Kanthimathinathan Hari Krishnan,Monaghan Sean,Nagakumar PrasadORCID,Scholefield Barnaby R,Welch Steven,Khan Naeem,Faustini Sian,Kearns Pamela,Taylor Graham S

Abstract

AbstractMultisystem inflammatory syndrome in children (MIS-C) is a life-threatening disease occurring several weeks after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. MIS-C has overlapping clinical features with Kawasaki Disease (KD), a rare childhood vasculitis. MIS-C therapy is largely based on KD treatment protocols but whether these diseases share underpinning immunological perturbations is unknown. We performed deep immune profiling on blood samples from healthy children and patients with MIS-C or KD. Acute MIS-C patients had highly activated neutrophils, classical monocytes and memory CD8+ T-cells; increased frequencies of B-cell plasmablasts and CD27-IgD-double-negative B-cells; and increased levels of pro-inflammatory (IL6, IL18, IP10, MCP1) but also anti-inflammatory (IL-10, IL1-RA, sTNFR1, sTNFR2) cytokines. Increased neutrophil count correlated with inflammation,cardiac dysfunction and disease severity. Two days after intravenous immunoglobulin (IVIG) treatment, MIS-C patients had increased CD163 expression on monocytes, expansion of a novel population of immature neutrophils, and decreased levels of pro- and anti-inflammatory cytokines in the blood accompanied by a transient increase in arginase in some patients. Our data show MIS-C and KD share substantial immunopathology and identify potential new mechanisms of action for IVIG, a widely used anti-inflammatory drug used to treat MIS-C, KD and other inflammatory diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3