Functional shifts of soil microbial communities associated with Alliaria petiolata invasion

Author:

Duchesneau KatherineORCID,Golemiec Anneke,Colautti Robert I.ORCID,Antunes Pedro M.ORCID

Abstract

AbstractSoil feedback is thought to be an important contributor to the success of invasive plants. Despite evidence that invasive plants change soil microbial diversity, the functional roles of microbes impacted by invasion are still unclear. This knowledge is a critical component of our understanding of ecological mechanisms of plant invasion. Mounting evidence suggests Alliaria petiolata can suppress arbuscular mycorrhizal fungi (AMF) to disrupt native plant communities in controlled laboratory and greenhouse experiments, though it is less clear if allelochemicals persist under natural field conditions. Alternatively, invasive plants may accumulate pathogens that are more harmful to competitors as predicted by the Enemy of my Enemy Hypothesis (EEH). We examined changes in functional groups of soil bacteria and fungi associated with ten naturally occurring populations of A. petiolata using amplicon sequences (16S and ITS rRNA). To relate soil microbial communities to impacts on co-occurring plants, we measured root infections and AMF colonization. We found no changes in the diversity and abundance of AMF in plants co-occurring with A. petiolata, suggesting that mycorrhizal suppression in the field may not be as critical to the invasion of A. petiolata as implied by more controlled experiments. Instead, we found changes in pathogen community composition and marginal evidence of increase in root lesions of plants growing with A. petiolata, lending support to the EEH. In addition to these impacts on plant health, changes in ectomycorrhiza, and other nutrient cycling microbes may be important forces underlying the invasion of A. petiolata and its impact on ecosystem function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3