Characterization of the untranslated region of lymphocytic choriomeningitis virus S segment

Author:

Taniguchi Satoshi,Yoshikawa TomokiORCID,Shimojima Masayuki,Fukushi Shuetsu,Kurosu Takeshi,Tani Hideki,Fukuma Aiko,Kato Fumihiro,Nakayama Eri,Maeki Takahiro,Tajima Shigeru,Lim Chang-Kweng,Ebihara Hideki,Kyuwa Shigeru,Morikawa ShigeruORCID,Saijo MasayukiORCID

Abstract

ABSTRACTLymphocytic choriomeningitis virus (LCMV) is a prototypic arenavirus. The viral genome consists of two RNA segments, L and S. The 5’- and 3’-termini of both L and S segments are highly conserved among arenaviruses. These regions consist of 19 complementary base pairs and are essential for viral genome replication and transcription. In addition to these 19 nucleotides in the 5’- and 3’-termini, there are untranslated regions (UTRs) composed of 58 and 41 nucleotide residues in the 5’ and 3’ UTRs, respectively, in the LCMV S segment. Their functional roles, however, have yet to be elucidated. In this study, a reverse genetics and a minigenome system for the LCMV strain WE were established and used to analyze the function of these regions. The results obtained from these analyses, plus RNA secondary structure prediction, revealed that not only these 19 nucleotides but also the 20th–40th and 20th–38th nucleotides located downstream of the 19 nucleotides in the 5’- and 3’-termini, respectively, are heavily involved in viral genome replication and transcription. Furthermore, the introduction of mutations in these regions depressed viral propagation in vitro and enhanced attenuation in vivo. Conversely, recombinant LCMVs (rLCMVs), which had various deletions in the other UTRs, propagated as well as wild-type LCMV in vitro but were attenuated in vivo. Most mice previously infected with rLCMVs with mutated UTRs, when further infected with a lethal dose of wild-type LCMV, survived. These results suggest that rLCMVs with mutated UTRs could be candidates for an LCMV vaccine.IMPORTANCEThe function of untranslated regions (UTRs) of the arenavirus genome has not well been studied except for the 19 nucleotides of the 5’- and 3’-termini. In this study the function of the UTRs of the LCMV S segment was analyzed. It was found that not only the 19 nucleotides of the 5’- and 3’-termini but also the 20th–40th and 20th–38th nucleotides located downstream of the 19 nucleotides in the 5’- and 3’-termini, respectively, were involved in viral genome replication and transcription. Furthermore, other UTRs in the S segment were involved in virulence in vivo. The introduction of mutations to these regions makes it possible to establish attenuated LCMV and potentially develop LCMV vaccine candidates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3