Abstract
1AbstractWe introduce a simple new approach for time-resolved multiplexed analysis of complex systems using near-infrared (NIR) dyes, applicable to in vitro and in vivo studies. We first show that fast and precise in vitro quantification of NIR fluorophores lifetime and stoichiometry can be done using phasor analysis, a computationally efficient and user-friendly representation of complex fluorescence intensity decays obtained with pulsed laser excitation. We apply this approach to the study of binding equilibria by Förster resonant energy transfer (FRET), using two different model systems: primary/secondary antibody binding in vitro and ligand/receptor binding in cell cultures. We then extend our demonstration to dynamic imaging of the pharmacokinetics of transferrin binding to the transferrin receptor in live mice, elucidating the kinetic of differential transferrin accumulation in specific organs, straightforwardly differentiating specific from non-specific binding. Our method, implemented in a freely-available software package, has all the advantages of time-resolved NIR imaging, including better tissue penetration and background-free imaging, but simplifies and considerably speeds up data processing and interpretation, while remaining quantitative. These advances make this method attractive and of broad applicability for in vitro and in vivo molecular imaging, and could be extended to applications as diverse as image guided-surgery or optical tomography.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献