In vitro and in vivo phasor analysis of stoichiometry and pharmacokinetics using near-infrared dyes

Author:

Chen Sez-JadeORCID,Sinsuebphon NattawutORCID,Rudkouskaya AlenaORCID,Barroso MargaridaORCID,Intes XavierORCID,Michalet XavierORCID

Abstract

1AbstractWe introduce a simple new approach for time-resolved multiplexed analysis of complex systems using near-infrared (NIR) dyes, applicable to in vitro and in vivo studies. We first show that fast and precise in vitro quantification of NIR fluorophores lifetime and stoichiometry can be done using phasor analysis, a computationally efficient and user-friendly representation of complex fluorescence intensity decays obtained with pulsed laser excitation. We apply this approach to the study of binding equilibria by Förster resonant energy transfer (FRET), using two different model systems: primary/secondary antibody binding in vitro and ligand/receptor binding in cell cultures. We then extend our demonstration to dynamic imaging of the pharmacokinetics of transferrin binding to the transferrin receptor in live mice, elucidating the kinetic of differential transferrin accumulation in specific organs, straightforwardly differentiating specific from non-specific binding. Our method, implemented in a freely-available software package, has all the advantages of time-resolved NIR imaging, including better tissue penetration and background-free imaging, but simplifies and considerably speeds up data processing and interpretation, while remaining quantitative. These advances make this method attractive and of broad applicability for in vitro and in vivo molecular imaging, and could be extended to applications as diverse as image guided-surgery or optical tomography.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A 512 × 512 SPAD Image Sensor With Integrated Gating for Widefield FLIM;IEEE Journal of Selected Topics in Quantum Electronics;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3