Predictions of Protein-Protein Interactions in Schistosoma Mansoni

Author:

Bear Javona White,McKerrow James H.

Abstract

AbstractBackgroundSchistosoma mansoni invasion of the human host involves a variety of cross-species protein-protein interactions. The pathogen expresses a diverse arsenal of proteins that facilitate the breach of physical and biochemical barriers present in skin, evasion of the immune system, and digestion of human hemoglobin, allowing schistosomes to reside in the host for years. However, only a small number of specific interactions between S. mansoni and human proteins have been identified. We present and apply a protocol that generates testable predictions of S. mansoni-human protein interactions.MethodsIn this study, we first predict S. mansoni-human protein interactions based on similarity to known protein complexes. Putative interactions were then scored and assessed using several contextual filters, including the use of annotation automatically derived from literature using a simple natural language processing methodology. Our method predicted 7 out of the 10 previously known cross-species interactions.ConclusionsSeveral predictions that warrant experimental follow-up were presented and discussed, including interactions involving potential vaccine candidate antigens, protease inhibition, and immune evasion. The application framework provides an integrated methodology for investigation of host-pathogen interactions and an extensive source of orthogonal data for experimental analysis. We have made the predictions available online for community perusal.Author SummaryThe S. mansoni parasite is the etiological agent of the disease Schistomiasis. However, protein-protein interactions have been experimentally characterized that relate to pathogenesis and establishment of infection. As with many pathogens, the understanding of these interactions is a key component for the development of new vaccines. In this project, we have applied a computational whole-genome comparative approach to aid in the prediction of interactions between S. mansoni and human proteins and to identify important proteins involved in infection. The results of applying this method recapitulate several previously characterized interactions, as well as suggest additional ones as potential therapeutic targets.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. World Health Organization. WHO Schistosomiasis, June 2012. URL http://www.who.int/topics/schistosomiasis/en/.

2. Immunopathogenesis of human schistosomiasis

3. Immunopathogenesis of schistosomiasis

4. Center for Disease Control. CDC - Schistosomiasis - Biology, June 2012. URL http://www.cdc.gov/parasites/schistosomiasis/biology.html.

5. Schistosomiasis—a century searching for chemotherapeutic drugs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3