Ensembling Unets, sparse representation and low dimensional visualization for rare chromosomal aberration detection in light microscopy images

Author:

Deschemps Antonin,Grégoire Eric,Martinez Juan S.,Vaurijoux Aurélie,Fernandez Pascale,Dugue Delphine,Bobyk Laure,Valente Marco,Gruel Gaëtan,Moebel Emmanuel,Benadjaoud Mohamed Amine,Kervrann Charles

Abstract

AbstractIn biological dosimetry, a radiation dose is estimated using the average number of chromosomal aberration per peripheral blood lymphocytes. To achieve an adequate precision in the estimation of this average, hundreds of cells must be analyzed in 2D microscopy images. Currently, this analysis is performed manually, as conventional computer vision techniques struggle with the wide variety of shapes showcased by chromosomes. The false discovery rate of current automated detection systems is high and variable, depending on small variations in data quality (chromosome spread, illumination variations …), which makes using it in a fully automated fashion impossible. Automating chromosomal aberration is needed to reduce diagnosis time. Furthermore, an automated system can process more images, which improves confidence intervals around the estimated radiation dose. We build an object detection model to automate chromosomal aberration detection using recent advances in deep convolutional neural networks and statistical learning. We formulated the problem of rare aberration detection as a heatmap regression problem requiring the minimization of a sparsity-promoting loss to reduce the false alarm rate. Our Unet-based approach is analoguous to a one-stage object detector, and keeps the number of hyperparameters to a minimum. Finally, we demonstrate large performance improvements using an ensemble of checkpoints collected during a single run of training. A PCA-based strategy is used to provide cues for interpretation of our deep neural network-based model. The methodology is demonstrated on real, large, and challenging datasets depicting rare chromosomal aberrations and is favorably compared to a reference dosimetry technique.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3