Abstract
AbstractGenome-wide association studies of complex traits frequently find that SNP-based estimates of heritability are considerably smaller than estimates from classic family-based studies. This ‘missing’ heritability may be partly explained by genetic variants interacting with other genes or environments that are difficult to specify, observe, and detect. To circumvent these challenges, we propose a new method to detect genetic interactions that leverages pleiotropy from multiple related traits without requiring the interacting variable to be specified or observed. Our approach, Latent Interaction Testing (LIT), uses the observation that correlated traits with shared latent genetic interactions have trait variance and covariance patterns that differ by genotype. LIT examines the relationship between trait variance/covariance patterns and genotype using a flexible kernel-based framework that is computationally scalable for biobank-sized datasets with a large number of traits. We first use simulated data to demonstrate that LIT substantially increases power to detect latent genetic interactions compared to a trait-by-trait univariate method. We then apply LIT to four obesity-related traits in the UK Biobank and detect genetic variants with interactive effects near known obesity-related genes. Overall, we show that LIT, implemented in the R packagelit, uses shared information across traits to improve detection of latent genetic interactions compared to standard approaches.
Publisher
Cold Spring Harbor Laboratory