Deep Learning for Protein–peptide binding Prediction: Incorporating Sequence, Structural and Language Model Features

Author:

Chandra AbelORCID,Sharma Alok,Dehzangi Iman,Tsunoda Tatsuhiko,Sattar Abdul

Abstract

ABSTRACTProtein-peptide interactions play a crucial role in various cellular processes and are implicated in abnormal cellular behaviors leading to diseases such as cancer. Therefore, understanding these interactions is vital for both functional genomics and drug discovery efforts. Despite a significant increase in the availability of protein-peptide complexes, experimental methods for studying these interactions remain laborious, time-consuming, and expensive. Computational methods offer a complementary approach but often fall short in terms of prediction accuracy. To address these challenges, we introduce PepCNN, a deep learning-based prediction model that incorporates structural and sequence-based information from primary protein sequences. By utilizing a combination of half-sphere exposure, position specific scoring matrices, and pre-trained transformer language model, PepCNN outperforms state-of-the-art methods in terms of specificity, precision, and AUC. The PepCNN software and datasets are publicly available athttps://github.com/abelavit/PepCNN.git.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. Assembly of Cell Regulatory Systems Through Protein Interaction Domains

2. Peptidic modulators of protein-protein interactions: progress and challenges in computational design;Biopolym. Orig. Res. on Biomol,2009

3. GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization

4. Systematic Discovery of New Recognition Peptides Mediating Protein Interaction Networks

5. Phoglystruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids;Sci. reports,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3