DCM-PROGRESS: predicting end-stage heart failure in non-ischemic dilated cardiomyopathy patients

Author:

Schmidt A FORCID,Leinveber P,Panovsky R,Soukup L,Machac P,van de Leur R RORCID,Sammani A,Lekadir K,Riele A ter,Asselbergs F W,Boonstra M J

Abstract

AbstractAimsPatients with non-ischemic dilated cardiomyopathy (DCM) are at considerable risk for end-stage heart failure (HF), requiring close monitoring to identify early signs of disease. We aimed to develop a model to predict the 5-years risk of end-stage HF, allowing for tailored patient monitoring and management.Methods and resultsDerivation data were available from a Dutch cohort of 293 DCM patients, with external validation available from a Czech Republic cohort of 235 DCM patients. Candidate predictors spanned patient and family histories, ECG and echocardiogram measurements, and biochemistry. End-stage HF was defined as a composite of death, heart transplantation, or implantation of a ventricular assist device. Lasso and sigmoid kernel support vector machine (SVM) algorithms were trained using cross-validation. During follow-up 65 (22%) of Dutch DCM patients developed end-stage HF, with 27 (11%) cases in the Czech cohort. Out of the two considered models, the lasso model (retaining NYHA class, heart rate, systolic blood pressure, height, R-axis, and TAPSE as predictors) reached the highest discriminative performance (testing c-statistic of 0.85, 95%CI 0.58; 0.94), which was confirmed in the external validation cohort (c-statistic of 0.75, 95%CI 0.61; 0.82), compared to a c-statistic of 0.69 for the MAGGIC score. Both the MAGGIC score and the DCM-PROGRESS model slightly over-estimated the true risk, but were otherwise appropriately calibrated.ConclusionWe developed a highly discriminative risk-prediction model for end-stage HF in DCM patients. The model was validated in two countries, suggesting the model can meaningfully improve clinical decision-making.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3