Resolving the nanoscale structure of β-sheet assemblies using single-molecule orientation-localization microscopy

Author:

Zhou WeiyanORCID,O’Neill Conor L.,Ding TianbenORCID,Zhang OumengORCID,Rudra Jai S.ORCID,Lew Matthew D.ORCID

Abstract

AbstractSynthetic peptides that self-assemble into cross-β fibrils have remarkable utility as engineered biomaterials due to their modularity and biocompatibility, but their structural and morphological similarity to amyloid species has been a long-standing concern for their translation. Further, their polymorphs are difficult to characterize using spectroscopic and imaging techniques that rely on ensemble averaging to achieve high resolution. Here, we utilize single-molecule orientation-localization microscopy (SMOLM) to characterize fibrils formed by the designed amphipathic enantiomers, KFE8Land KFE8D, and the pathological amyloid-beta peptide Aβ42. SMOLM reveals that the orientations of Nile red, as it transiently binds to both KFE8 and Aβ42, are consistent with a helical (bilayer) ribbon structure and convey the precise tilt of the fibrils’ inner and outer backbones. SMOLM also finds polymorphic branched and curved morphologies of KFE8 whose backbones exhibit much more heterogeneity than those of more typical straight fibrils. Thus, SMOLM is a powerful tool to interrogate the structural differences and polymorphism between engineered and pathological cross β-rich fibrils.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3