Predicting self-harm at one year in female prisoners: a retrospective cohort study using machine learning

Author:

Tiffin Paul AORCID,Leelamanthep Sant,Paton Lewis WORCID,Perry Amanda E.

Abstract

AbstractBackgroundSelf-harm and suicide are relatively overrepresented in incarcerated populations, especially in female prisons. Identifying those most at risk of significant self-harm could provide opportunities for effective, targeted interventions.AimsTo develop and validate a machine learning-based algorithm capable of achieving a clinically useful level of accuracy when predicting the risk of self-harm in female prisoners.MethodData were available on 31 variables for 286 female prisoners from a single UK-based prison. This included sociodemographic factors, nature of the index offence, and responses to several psychometric assessment tools used at baseline. At 12-month follow-up any self-harm incidents were reported. A machine learning algorithm (CatBoost) to predict self-harm at one-year was developed and tested. To quantify uncertainty about the accuracy of the algorithm, the model building and evaluation process was repeated 2000 times and the distribution of results summarised.ResultsThe mean Area Under the Curve (AUC) for the model on unseen (validation) data was 0.92 (SD 0.04). Sensitivity was 0.83 (SD 0.07), specificity 0.94 (SD 0.03), positive predictive value 0.78 (SD 0.08) and the negative predictive value 0.95 (0.02). If the algorithm was used in this population, for every 100 women screened, this would equate to approximately 17 ‘true positives’ and five ‘false positives’.ConclusionsThe accuracy of the algorithm was superior to those previously reported for predicting future self-harm in general and prison populations and likely to provide clinically useful levels of prediction. Research is needed to evaluate the feasibility of implementing this approach in a prison setting.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3