NeurOne: High-performance Motor Unit-Computer Interface for the Paralyzed

Author:

Braun Dominik I.ORCID,Souza de Oliveira DanielaORCID,Bayer PatriciaORCID,Ponfick MatthiasORCID,Kinfe Thomas MehariORCID,Vecchio Alessandro DelORCID

Abstract

AbstractWe have recently demonstrated that humans with motor-and-sensory complete cervical spinal cord injury (SCI) can modulate the activity of spared motor neurons that control the movements of paralyzed muscles. These motor neurons still receive highly functional cortical inputs that proportionally control flexion and extension movements of the paralyzed hand digits. In this study, we report a series of longitudinal experiments in which subjects with motor complete SCI received motor unit feedback from NeurOne. NeurOne is a software that realizes super-fast digitalization of motor neuron spiking activity (32 frames/s) and control of these neural ensembles through a physiological motor unit twitch model that enables intuitive brain-computer interactions closely matching the voluntary force modulation of healthy hand digits. We asked the subjects (n=3, 3-4 laboratory visits) to match a target displayed on a monitor through a cursor that was controlled by the modulation of the recruitment and rate coding of the spared motor units using a motor unit twitch model. The attempted movements of the paralyzed hands involved grasping and hand digit extension/flexion. The target cursor was scaled in a way that the subjects could increase or decrease feedback by either recruiting or derecruiting motor units, or by modulating the instantaneous discharge rate. The subjects learned to control the motor unit output with high levels of accuracy across different target intensities up to the maximal achievable discharge rate. Indeed, the high-performance motor output was surprisingly stable in a similar way as healthy subjects modulated the muscle force output recorded by a dynamometer. Therefore, NeurOne enables tetraplegic individuals an intuitive control of the paralyzed muscles through a digital neuromuscular system.Significance StatementOur study demonstrates the remarkable ability of individuals with complete cervical spinal cord injuries to modulate spared motor neurons and control paralyzed muscles. Utilizing NeurOne, a software, we enabled intuitive brain-computer interactions by digitalizing motor neuron spiking activity and employing a motor unit twitch model. Through this interface, tetraplegic individuals achieved high levels of accuracy and proportional control which closely resembled motor function in intact humans. NeurOne provides a promising digital neuromuscular interface, empowering individuals to control assistive devices super-fast and intuitive. This study signifies an important advancement in enhancing motor function and improving the quality of life for those with spinal cord injuries.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3