Ensembled best subset selection using summary statistics for polygenic risk prediction

Author:

Chen TonyORCID,Zhang Haoyu,Mazumder Rahul,Lin Xihong

Abstract

AbstractPolygenic risk scores (PRS) enhance population risk stratification and advance personalized medicine, yet existing methods face a tradeoff between predictive power and computational efficiency. We introduce ALL-Sum, a fast and scalable PRS method that combines an efficient summary statistic-based L0L2penalized regression algorithm with an ensembling step that aggregates estimates from different tuning parameters for improved prediction performance. In extensive large-scale simulations across a wide range of polygenicity and genome-wide association studies (GWAS) sample sizes, ALL-Sum consistently outperforms popular alternative methods in terms of prediction accuracy, runtime, and memory usage. We analyze 27 published GWAS summary statistics for 11 complex traits from 9 reputable data sources, including the Global Lipids Genetics Consortium, Breast Cancer Association Consortium, and FinnGen, evaluated using individual-level UKBB data. ALL-Sum achieves the highest accuracy for most traits, particularly for GWAS with large sample sizes. We provide ALL-Sum as a user-friendly command-line software with pre-computed reference data for streamlined user-end analysis.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3