Data-driven estimates of the reproducibility of univariate BWAS are biased

Author:

Burns Charles D.G.ORCID,Fracasso AlessioORCID,Rousselet Guillaume A.ORCID

Abstract

AbstractRecently, Marek, Tervo-Clemmenset al.1leveraged consortium neuroimaging data to answer a question on most researchers’ minds: how many subjects are required for reproducible brain-wide association studies (BWAS)? Their approach could be considered a framework for testing the reproducibility of several neuroimaging models and measures. Here we test part of this framework, namely estimates of statistical errors of univariate brain-behaviour associations obtained from resampling large datasets with replacement. We suggest that reported estimates of statistical errors are largely a consequence of bias introduced by random effects when sampling with replacement close to the full sample size. We show that these biases can be largely avoided by only resampling up to 10% of the full sample size. Using this unbiased approach, sample size requirements for reproducible univariate BWAS tested by Marek, Tervo-Clemmenset al. are even worse.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3