Adaptive HD-sEMG decomposition: Towards robust real-time decoding of neural drive

Author:

Yeung DennisORCID,Negro FrancescoORCID,Vujaklija IvanORCID

Abstract

AbstractNeural interfacing via decomposition of high-density surface electromyography (HD-sEMG) should be robust to signal non-stationarities incurred by changes in joint pose and contraction intensity. We present an adaptive real-time motor unit (MU) decoding algorithm and test it on HD-sEMG collected from the extensor carpi radialis brevis during isometric contractions over a range of wrist angles and contraction intensities. The performance of the algorithm was verified using high-confidence benchmark decompositions derived from concurrently recorded intramuscular electromyography (iEMG). In trials where contraction conditions between the initialization and testing data differed, the adaptive decoding algorithm maintained significantly higher decoding accuracies when compared to static decoding methods. Using ‘gold standard’ verification techniques, we demonstrate the limitations of filter re-use decoding methods and show the necessity of parameter adaptation to achieve robust neural decoding.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. The contractile properties of human motor units during voluntary isometric contractions

2. Human motor unit recordings: Origins and insight into the integrated motor system

3. Behaviour of human motor units in different muscles during linearly varying contractions

4. Analysis of intramuscular electromyogram signals;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2008

5. Automatic decomposition of multichannel intramuscular EMG signals;Journal of Electromyography and Kinesiology,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3