Soybean RIN4 represents a mechanistic link between plant immune and symbiotic signaling

Author:

Tóth Katalin,Kim Daewon,Cho Sung-Hwan,Nguyen Cuong T.,Nguyen Tran H. N.,Hartanto Christopher,Michno Jean-Michel,Stec Adrian O.,Stupar Robert M.,Stacey GaryORCID

Abstract

AbstractThe legume-rhizobium symbiosis represents a unique and beneficial interaction between legumes and nitrogen-fixing soil bacteria, called rhizobia. The initiation and development of this symbiosis is complex and begins with recognition of key molecular signals, produced by the plant and its symbiont, which determine symbiotic compatibility. Current data suggest that the invading symbiont initially triggers plant immune responses that are subsequently suppressed. Hence, there is growing evidence that features of plant immunity may be relevant to symbiotic establishment. RIN4 is a key immune regulator in plants, regulating basal immunity and it is also targeted by pathogen effector proteins that either confer susceptibility or resistance, depending on the presence of the appropriate resistance protein. Surprisingly, we found that RIN4 was rapidly phosphorylated upon rhizobial inoculation of soybean root hairs. RNAi silencing and mutant studies indicate that RIN4 expression is essential for effective nodulation of soybean. RIN4 phosphorylation occurs within a fifteen amino acid motif, which is highly conserved within the Fabales (legumes) and Rosales orders, that comprise species capable of nitrogen-fixing endosymbiosis with rhizobia. RIN4 proteins mutated in this conserved phosphorylation site failed to support efficient soybean nodulation. Phosphorylation of this site is mediated by the symbiotic receptor-like kinase, SymRK, a well-studied member of the symbiotic signaling pathway. The data implicate RIN4 phosphorylation as a key mediator of rhizobial compatibility, interconnecting symbiotic and immune signaling pathways.SignificanceThe nitrogen fixing legume-rhizobium symbiosis is a cornerstone of sustainable agriculture, with ongoing efforts to transfer this unique ability to non-leguminous crop plants. Plants are surrounded by a myriad of microbes in the soil, and, therefore, require constant surveillance in order to distinguish between a pathogen or symbiont. Plants monitor for specific molecular signals that indicate pathogen or symbiont presence. We show that RIN4, a key immune regulator, plays an essential role in promoting the development of the symbiotic nitrogen-fixing relationship between soybean and its compatible symbiontBradyrhizobium japonicum. Therefore, RIN4 is likely a key player in mediating the appropriate response upon infection by friend or foe.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3