Enhanced ISGylation reduces respiratory distress followingFrancisella novicidainfection

Author:

Upton Ellen M.,Luhmann Emma K.,Zhang Yifeng,Ripley Brittany M.,Meyerholz David K.,Radoshevich LillianaORCID

Abstract

AbstractThe Interferon-Stimulated Gene 15 (ISG15) is a ubiquitin-like protein induced by viral and bacterial infection. ISG15 covalently modifies host and pathogenic proteins in a process called ISGylation. Yet, the consequences of ISGylation on protein fate and function remain to be determined. Here we sought to assess whether ISGylation would be protective following bacterial pneumonia caused byFrancisella novicida.We found that infection withF. novicidainduces ISGylation bothin vitroin macrophages andin vivoin the lung, liver, and spleen of mice infected intranasally. Surprisingly, ISG15 and ISGylation do not affect bacterial burden in the lungin vivo, but in a model of enhanced ISGylation (usp18C61A/C61A) mice have decreased respiratory distress relative toIsg15-/-animals. In order to understand the mechanism which underlies this phenotype, we mapped the ISGylome ofF. novicida-infected mouse lungs using label-free quantitative mass spectrometry and identified enrichment in ISGylation of proteins involved in the innate immune response and cytosolic nucleotide signaling. We validated ISGylation of the sterile alpha motif and HD-containing protein 1 (SAMHD1) via immunoprecipitation. SAMHD1 depletes cytosolic dinucleotide stores critical for retroviral replication but it is unknown how its activity could affect bacterial infection. Structure-function analysis indicates that ISG15 modification sites inusp18C61A/C61Amice could prevent SAMHD1 dimerization and therefore abrogate function. Accordingly, deletion of SAMHD1 in fibroblasts with enhanced ISGylation reduces bacterial load. Taken together, unchecked ISGylation plays a protective role inF. novicidainfection in vivo through improved respiratory function. Thus, inhibiting USP18 may be a promising therapeutic strategy for both viral and bacterial pneumonia.Author summaryFrancisella tularensisis a bacterial pathogen responsible for the disease tularemia, which can result in severe respiratory infection if as few as ten bacteria are inhaled. Our cells have many ways of managing infections, including the production of proteins designed to fight off foreign pathogens. One protein produced following infection is the interferon-stimulated gene 15 (ISG15). ISG15 is a ubiquitin-like molecule, meaning that it can be chemically attached to other proteins. When bound ISG15 changes the stability, interacting partners, or function of its target in a process termed ISGylation. Here we show that ISG15 is produced following infection withFrancisella.We found that enhanced ISGylation led to less severe respiratory symptoms. To better understand the mechanism by which ISGylation protects from infection we identified the ISG15-modified proteins in the lung using mass-spectrometry-based proteomics. We found protein targets that are involved in the control of immune signaling pathways including sterile alpha motif and HD-containing protein 1 (SAMHD1) which, when deleted in cells with enhanced ISGylation, leads to better bacterial clearance. Together, we show that enhanced ISGylation plays a protective role following bacterial pneumonia, indicating that targeting this pathway could prove a beneficial therapeutic in both bacterial and viral respiratory diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3