The role of heparan sulfate in enhancing the chemotherapeutic response in triple-negative breast cancer

Author:

Manouchehri Jasmine M,Marcho Lynn,Cherian Mathew A

Abstract

AbstractBackgroundAmong women worldwide, breast cancer has the highest incidence and is the leading cause of cancer-related death. Patients with the triple-negative breast cancer (TNBC) subtype have an inferior prognosis in comparison to other breast cancers because current therapies do not facilitate long-lasting responses. Thus, there is a demand for more innovative therapies that induce durable responses.In our previous research, we discovered that augmenting the concentration of extracellular ATP (eATP) greatly enhances the chemotherapeutic response of TNBC cell lines by activating purinergic receptors (P2RXs), leading to cell death through the induction of non-selective membrane permeability. However, eATP levels are limited by several classes of extracellular ATPases. One endogenous molecule of interest that can inhibit multiple classes of extracellular ATPases is heparan sulfate. Polysulfated polysaccharide heparan sulfate itself is degraded by heparanase, an enzyme that is known to be highly expressed in various cancers, including breast cancer. Heparan sulfate has previously been shown to regulate several cancer-related processes such as fibroblast growth factor signaling, neoangiogenesis by sequestering vascular endothelial growth factors in the extracellular matrix, hedgehog signaling and cell adhesion. In this project, we identified an additional mechanism for a tumor suppressor role of heparan sulfate: inhibition of extracellular ATPases, leading to augmented levels of eATP.Several heparanase inhibitors have been previously identified, including OGT 2115, suramin, PI-88, and PG 545. We hypothesized that heparanase inhibitors would augment eATP concentrations in TNBC by increasing heparan sulfate in the tumor microenvironment, resulting in enhanced cell death in response to chemotherapy.MethodsWe treated TNBC cell lines MDA-MB 231, Hs 578t, and MDA-MB 468 and non-tumorigenic immortal mammary epithelial MCF-10A cells with increasing concentrations of the chemotherapeutic agent paclitaxel in the presence of heparan sulfate and/or the heparanase inhibitor OGT 2115 while analyzing eATP release and cell viability. Moreover, to verify that the effects of OGT 2115 are mediated through eATP, we applied specific antagonists to the purinergic receptors P2RX4 and P2RX7. In addition, the protein expression of heparanase was compared in the cell lines by Western blot analysis. We also evaluated the consequences of this therapeutic strategy on the breast cancer-initiating cell population in the treated cells using flow cytometry and tumorsphere formation efficiency assays.ResultsHeparanase was found to be highly expressed in immortal mammary epithelial cells in comparison to TNBC cell lines. The heparanase inhibitor OGT 2115 augmented chemotherapy-induced TNBC cell death and eATP release.ConclusionThese results demonstrate that inhibiting the degradation of heparan sulfate in the tumor microenvironment augments the susceptibility of TNBC cell lines to chemotherapy by increasing extracellular ATP concentrations. This strategy could potentially be applied to induce more enhanced and enduring responses in TNBC patients.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3