Exploiting fluctuations in gene expression to detect causal interactions between genes

Author:

Joly-Smith EuanORCID,Talpur Mir Mikdad,Allard PaigeORCID,Papazotos FotiniORCID,Potvin-Trottier LaurentORCID,Hilfinger AndreasORCID

Abstract

Characterizing and manipulating cellular behaviour requires a mechanistic understanding of the causal interactions between cellular components. We present an approach that can detect causal interactions between genes without the need to perturb the physiological state of cells. This approach exploits naturally occurring cell-to-cell variability which is experimentally accessible from static population snapshots of genetically identical cells without the need to follow cells over time. Our main contribution is a simple mathematical relation that constrains the propagation of gene expression noise through biochemical reaction networks. This relation allows us to rigorously interpret fluctuation data even when only a small part of a complex gene regulatory process can be observed. This relation can be exploited to detect causal interactions by synthetically engineering a passive reporter of gene expression, akin to the established “dual reporter assay”. While the focus of our contribution is theoretical, we also present an experimental proof-of-principle to illustrate the approach. Our data from synthetic gene regulatory networks inE. coliare not unequivocal but suggest that the method could prove useful in practice to identify causal interactions between genes from non-genetic cell-to-cell variability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3